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Abstract. The multisymplectic structure of the KdV equation is presented directly from the
variational principle. From the numerical view point, we give a multisymplectic twelve-points
scheme which is equivalent to the multisymplectic Preissmann scheme. Finally, we test the twelve-
points scheme on solitary waves over long time intervals.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Many Hamiltonian PDEs can be described in the language of multisymplectic geometry,
for example, the KdV equation, the sine-Gordon equation, the Schrödinger equation, and
so on. In addition to allowing one to treat these partial differential equations covariantly,
the multisymplectic geometrical method enables one to study the underlying geometrical
properties of these partial differential equations. The multisymplectic form plays a very
important role in the theory of multisymplectic geometry. The traditional method of giving the
multisymplectic form is to construct a Cartan form by the Legendre transformation where
the multisymplectic form is the differential of the Cartan form. Recently, for first-order
field theory, i.e., the Lagrangian density depends on the state variables and their first-order
derivatives, Marsden et al [8] presented a method which can obtain the multisymplectic
structure in a variational framework completely. However, the Lagrangian density of the KdV
equation is not first order, therefore MPS theory cannot be applied directly. In field theory
a ‘multisymplectic structure’ is a manifold with a single higher-order differential form [7–9]
also known as the Cartan form. The concept of a multisymplectic geometry in the Bridges’
sense is a manifold with a collection of closed two-forms, each of which is non-degenerate
on a submanifold [10, 11]. In order to give an invariant framework for the collection of
presymplectic two-forms used by Bridges, an interesting approach is to concatenate them into
a single three-form which is the differential of the Cartan form in field theory [9]. In this paper,
we focus our attention on the KdV equation (whose Lagrangian density is second order) and
give the multisymplectic structure of the KdV equation directly from the variational principle.

A basic idea behind the design of numerical schemes is that they can preserve the properties
of the original problems as much as possible. From this point of view, the authors of [1–6] have
studied some symplectic schemes for computation of Hamiltonian PDEs. Many Hamiltonian
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PDEs can be written as multisymplectic equations [10, 11]. Multisymplectic equations have
important multisymplectic conservation laws. In the numerical study, we also hope that the
numerical approximations can preserve the multisymplectic conservation laws. Bridges and
Reich have shown that some numerical discretizations are multisymplectic [10,12,13]. A very
useful multisymplectic formula for the KdV equation was given by Bridges [11]. Similar to
the method given in [12], we show that the Preissmann scheme is a multisymplectic scheme
for the KdV equation. Though the Preissmann scheme is multisymplectic, it involves more
computational effort, so we reduce it to a multisymplectic twelve-points scheme. Using the
twelve-points scheme, we obtain some numerical results on solitary waves over long time
intervals. Compared with the Zabusky–Kruskal scheme [15], the twelve-points scheme gives
the same accurate waveforms as the Zabusky–Kruskal scheme, but the twelve-points scheme
gives the waveforms for a longer time than the Zabusky–Kruskal scheme.

This paper is organized as follows. In section 2 we describe the multisymplectic geometry
of the KdV equation staying entirely in the framework of the variational principle. In section 3
we discuss the multisymplectic Preissmann scheme and reduce it to a multisymplectic twelve-
points scheme. Finally, section 4 gives some numerical results on solitary waves over long
time intervals.

2. Multisymplectic geometry of the KdV equation

We begin by reviewing a few facts on jet bundles. As an example, we consider the first jet
bundle.

The analogue of the configuration space in particle mechanics is the configuration bundle
πXY : Y → X, over an oriented manifoldX. Usually,X is the spacetime manifold. We let TxX
denote the tangent space of X at x, and denote the derivative of the map πXY in the direction
w by TπXY · w.

Just as the configuration bundle is the analogue of the configuration space, the jet bundle
is the analogue of the tangle bundle.

Definition 2.1. The first jet bundle over Y is a fibre bundle denoted by J 1(Y ) whose fibre over
y ∈ Yx = π−1

XY (x), x ∈ X consists of those linear mappings γ : TxX → TyY , satisfying

TπXY ◦ γ = Identity on TxX.

For simplicity, we let X be the two-dimensional spacetime manifold and the fibre
dimension of Y be 1. Coordinates on X are denoted by x, t . The fibre coordinate of Y is
denoted by z. We denote the coordinates of the fibre of J 1(Y ) by vx , vt . We let ϕ : X → Y

be a section of πXY . Corresponding to the section ϕ, j 1(ϕ) defines a section of J 1(Y ). In
coordinates, j 1(ϕ) is given by (x, t, ϕ, ϕx, ϕt ), ϕx = ∂ϕ

∂x
, ϕt = ∂ϕ

∂t
.

Analogous to the first jet bundle, a higher-order jet bundle Jm(Y ) follows as J 1(Jm−1(Y ))

and jm(ϕ) is a section of Jm(Y ).
Above, we only give a brief review of the jet bundle. Some facts on multisymplectic

geometry, for example, the dual jet bundle (the analogue of the cotangent), can be found
in [7, 8].

The KdV equation can be written as

ut + uxxx + 6uux = 0. (2.1)

To place the KdV equation in the variational framework, we let τx = u. Then, τ satisfies the
equation

τxt + 6τxτxx + τxxxx = 0. (2.2)
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The Lagrangian density for equation (2.2) is

L(j 2(ϕ)) = ( 1
2ϕtϕx + ϕ3

x − 1
2ϕ

2
xx) dx ∧ dt. (2.3)

Corresponding to the Lagrangian density L(j 2(ϕ)), the action function is defined as follows:

S(ϕ) =
∫
U

Ł(j 2(ϕ)) U is an open set of X. (2.4)

Let G be the Lie group of πXY bundle automorphisms ηY covering ηX. Denote ηλY an
smooth path in G such that

ϕ̄ = ηλY ◦ ϕ ◦ (ηλX)−1.

The vector field (the infinitesimal generator) of ηλY is

V = d

dλ

∣∣∣∣
λ=0

ϕ̄ =
[
V x

V t

V ϕ

]
.

We say that ϕ is a extremum of S if

d

dλ

∣∣∣∣
λ=0

S(ϕ̄) = 0.

Now we consider the variation
d

dλ

∣∣∣∣
λ=0

S(ϕ̄) = d

dλ

∣∣∣∣
λ=0

∫
ηλXU

(
1

2
ϕ̄t̄ ϕ̄x̄ + ϕ̄3

x̄ − 1

2
ϕ̄x̄x̄

)
dx̄ ∧ dt̄

where

ηλX

[
x

t

]
=

[
x̄

t̄

]
.

A direct computation shows

d

dλ

∣∣∣∣
λ=0

S(ϕ̄) = I1 + I2

in which

I1 =
∫
U

(−ϕxt − 6ϕxϕxx − ϕxxxx)(V ϕ − ϕtV t − ϕxV x) dx ∧ dt

I2 =
∫
∂U

(−ϕxxV ϕx + ϕxxϕxV
x
x + ϕxxϕtV

t
x + ϕxxϕxtV

t ) dt + ϕ2
xxV

t dx − 1
2ϕx(V

ϕ dx

−ϕtV x dt − ϕxV x dx) + ( 1
2ϕ

2
xx − 2ϕ3

x − 1
2ϕtϕx − ϕxϕxxx)(V x dt − V t dx)

+( 1
2ϕt + 3ϕ2

x + ϕxxx)(V
ϕ dt − ϕxV t dx − ϕtV t dt).

By I2, we can define a Cartan form

θL = −ϕxx dϕx ∧ dt − 1
2ϕx dϕ ∧ dx + ( 1

2ϕt + 3ϕ2
x + ϕxxx) dϕ ∧ dt

+( 1
2ϕ

2
xx − 2ϕ3

x − 1
2ϕtϕx − ϕxϕxxx) dx ∧ dt . (2.5)

Since

j 3(ϕ)∗ dx = dx j 3(ϕ)∗ dt = dt

j 3(ϕ)∗ dϕ = ϕx dx + ϕt dt j 3(ϕ)∗ dϕx = ϕxx dx + ϕxt dt

we have

I2 =
∫
∂U

j 3(ϕ)∗(j 3(V )
θL)



3616 P F Zhao and M Z Qin

where j 3(V ) is the jet prolongation of the vector field V [16]. The form θL matches the
definition of the Cartan form given by Gotay [9] and the multisymplectic form is the 3-form
 L = − dθL. Form  L defines a multisymplectic structure on jet bundle J 3(Y ).

Above we give the Cartan form θL and the multisymplectic form  L, next we consider
the Euler–Lagrange equation for the action function S(ϕ).

Noting that L(j 2(ϕ̄)) = j 3(ϕ̄)∗θL, we have

d

dλ

∣∣∣∣
λ=0

∫
Ū=ηλXU

L(j 2(ϕ̄)) = d

dλ

∣∣∣∣
λ=0

∫
Ū

j 3(ϕ̄)∗θL

= d

dλ

∣∣∣∣
λ=0

∫
Ū

j 3(ηλY ◦ ϕ ◦ (ηλX)−1)∗θL

= d

dλ

∣∣∣∣
λ=0

∫
Ū

((ηλX)
−1)∗j 3(ϕ)∗j 3(ηλY )

∗θL (2.6)

= d

dλ

∣∣∣∣
λ=0

∫
U

j 3(ϕ)∗j 3(ηλY )
∗θL

=
∫
U

j 3(ϕ)∗£j 3(V )θL.

Since

£j 3(V )θL = −j 3(V )
 L + d(j 3(V )
θL)
where the symbol £ denotes the Lie derivative, we obtain that

d

dλ

∣∣∣∣
λ=0

S(ϕ̄) = −
∫
U

j 3(ϕ)∗(j 3(V )
 L) +
∫
∂U

j 3(ϕ)∗(j 3(V )
θL).

If V is a vector field with compact support, we have∫
∂U

j 3(ϕ)∗(j 3(V )
θL) = 0.

Hence, a necessary condition for ϕ to be an extremum is that∫
U

j 3(ϕ)(j 3(V )
 L) = 0 for any V with compact support. (2.7)

We may compute the integrand of (2.6) and obtain that

j 3(ϕ)∗(j 3(V )
 L) = (ϕxt + 6ϕxϕxx + ϕxxxx)(V
ϕ − ϕtV t − ϕxV x). (2.8)

Taking the πXY -vertical vector field V (TπXY · V = 0) and using the standard method from
variational calculus, we obtain that ϕ satisfies

ϕxt + 6ϕxϕxx + ϕxxxx = 0 (2.9)

i.e., equation (2.2). So, for any vector field V ,

j 3(ϕ)∗(j 3(V )
 L) = 0 (2.10)

holds. A short computation verifies that

j 3(ϕ)∗(P 
 L) = 0 (2.11)

where P ∈ T J 3(Y ) and is Tπ
Y,J3(Y )

-vertical. For any W ∈ T J 3(Y ), there exists a vector field
V , such that

W = j 3(V ) + P (2.12)
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where P is Tπ
Y,J3(Y )

-vertical. So, by (2.9)–(2.11), if ϕ is an extremum of S, j 3(ϕ)∗(W
 L)
must vanish for any vector fieldW ∈ T J 3(Y ). Thus, we get the Euler–Lagrange equation

j 3(ϕ)∗(W
 L) = 0 (2.13)

for any vector fieldW ∈ T J 3(Y ).
In the following, we consider the multisymplectic form formula and a corollary of the

multisymplectic form formula.

Theorem 2.2. Let ηλY and ξλY be two one-parameter symmetry groups of equation (2.12) and
the corresponding vector fields be V and W. Then, we have the multisymplectic form formula∫

∂U

j 3(ϕ)∗(j 3(V )
j 3(W)
 L) = 0. (2.14)

Proof. Since j 3[W,V ] = [j 3(W), j 3(V )], we have

0 =
∫
U

j 3(ϕ)∗(j 3[W,V ]
 L)

=
∫
U

j 3(ϕ)∗([j 3(W), j 3(V )]
 L)

=
∫
U

j 3(ϕ)∗(£j 3(W)(j
3(V )
 L)− j 3(V )
£j 3(W) L). (2.15)

ηλY and T λY are two one-parameter symmetry groups of equation (2.12), so

d

dλ

∣∣∣∣
λ=0

j 3(ηλY ◦ ϕ ◦ (ηλX)−1)∗(Q
 L) = j 3(ϕ)∗£j 3(V )(Q
 L)
= 0 (2.16)

d

dλ

∣∣∣∣
λ=0

j 3(ξλY ◦ ϕ ◦ (ξλX)−1)∗(Q
 L) = j 3(ϕ)∗£j 3(W)(Q
 L)
= 0 (2.17)

for any vector fieldQ ∈ T J 3(Y ). Thus (2.14) becomes

0 = −
∫
U

j 3(ϕ)∗(j 3(V )
£j 3(W) L)

= −
∫
U

j 3(ϕ)∗(j 3(V )
 d(j 3(W)
 L))

=
∫
U

j 3(ϕ)∗(j 3(V )
 d(£j 3(W)θL)). (2.18)

J 3(V )
j 3(W)
 L can be written as

J 3(V )
j 3(W)
 L = j 3(V )
 d(j 3(W)
θL)− j 3(V )
£j 3(W)θL

= £j 3(V )(j
3(W)
θL)− j 3(V )
£j 3(W)θL − d(j 3(V )
j 3(W)
θL)

so we obtain that∫
∂U

j 3(ϕ)∗(j 3(V )
j 3(W)
 L)

=
∫
∂U

j 3(ϕ)∗(£j 3(V )(j
3(W)
θL)− j 3(V )
£j 3(W)θL − d(j 3(V )
j 3(W)
θL))

=
∫
U

j 3(ϕ)∗ d(£j 3(V )(j
3(W)
θL)− j 3(V )
£j 3(W)θL). (2.19)
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In addition, since

£j 3(V )£j 3(W)θL = j 3(V )
 d(£j 3(W)θL) + d(j 3(V )
£j 3(W)θL)

= £j 3(V )(j
3(W)
(− L)) + £j 3(V ) d(j 3(W)
θL)

= −£j 3(V )(j
3(W)
 L) + d£j 3(V )(j

3(W)
θL)
we have∫
∂U

j 3(ϕ)∗(j 3(V )
j 3(W)
 L)

=
∫
U

j 3(ϕ)∗(j 3(V )
 d(£j 3(W)θL) + £j 3(V )(j
3(W)
 L)). (2.20)

Hence, by (2.15) and (2.17), we get∫
∂U

j 3(ϕ)∗(j 3(V )
j 3(W)
 L) = 0.

�

In fact, a direct computation verifies that d dS = ∫
∂U
j 3(ϕ)∗(j 3(V )
j 3(W)
 L) = 0.

Remark. In general, V andW take the form ξ(x, t, ϕ) ∂
∂x

+ η(x, t, ϕ) ∂
∂t

+ ψ(x, t, ϕ) ∂
∂ϕ

. If V
andW are generalized vector fields (see [16]), i.e., ξ, η, ψ not only depend on x, t, ψ but also
on derivatives of ϕ, a trival modification of the proof of theorem (2.2) (J 3(Y ) to J∞(Y )) shows
that theorem (2.2) is also correct. Furthermore, if V andW are infinitesimal symmetries [16]
of equation (2.12), theorem 2.2 also holds.

Set u = ϕx , v = ux , w = 1
2ϕt + vx + V ′(u), V (u) = u3, then the KdV equation can be

reformulated to

Mzt +Kzx = zS(z) (2.21)

in which

M =


0 1

2 0 0
− 1

2 0 0 0
0 0 0 0
0 0 0 0

 K =


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

 z =


ϕ

u

v

w


and S(z) = 1

2v
2 − uw + V (u). For equation (2.20), there is a conservation law

∂t (dz ∧M dz) + ∂x(dz ∧K dz) = 0. (2.22)

Substituting K ,M into (2.21) leads to

∂t (dϕ ∧ du) + 2∂x(dϕ ∧ dw + dv ∧ du) = 0. (2.23)

Form dϕ ∧ du defines a symplectic structure about the time direction and dϕ ∧ dw,
dv ∧ du define two symplectic structures about the space direction. In this sense, we
call conservation law (2.22) a multisymplectic conservation law [10]. In fact, we can
view conservation law (2.22) as a corollary of theorem (2.2). Let V , W be πXY -
vertical and have the expressions V ϕ ∂

∂ϕ
, Wϕ ∂

∂ϕ
. Then, the corresponding j 3(V ) and

j 3(W) have the coordinate expressions (V ϕ, V ϕx , V
ϕ
t , V

ϕ
xt , V

ϕ
tt , V

ϕ
xx, V

ϕ
ttx, V

ϕ
ttt , V

ϕ
xxx, V

ϕ
xxt ) and

(Wϕ,W
ϕ
x ,W

ϕ
t ,W

ϕ
xt ,W

ϕ
tt ,W

ϕ
xx,W

ϕ
ttx,W

ϕ
ttt ,W

ϕ
xxx,W

ϕ
xxt ). We compute

j 3(ϕ)∗(j 3(V )
j 3(W)
 L) = 1
2 (W

ϕ
x V

ϕ − V ϕx Wϕ) dx + (Wϕ
xxV

ϕ
x − V ϕxxWϕ

x + 1
2W

ϕV
ϕ
t

− 1
2V

ϕW
ϕ
t + 6ϕxW

ϕV ϕx − 6ϕxV
ϕWϕ

x +WϕV ϕxxx − V ϕWϕ
xxx) dt. (2.24)
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So by Stokes’ theorem, we have∫
U

−1

2

∂

∂t
(Wϕ

x V
ϕ − V ϕx Wϕ) dx ∧ dt +

∂

∂x

(
Wϕ
xxV

ϕ
x − V ϕxxWϕ

x +
1

2
WϕV

ϕ
t − 1

2
V ϕW

ϕ
t

+6ϕxW
ϕV ϕx − 6ϕxV

ϕWϕ
x +WϕV ϕxxx − V ϕWϕ

xxx

)
dx ∧ dt = 0. (2.25)

Since U is arbitary, we obtain[
∂

∂t
(Wϕ

x V
ϕ − V ϕx Wϕ)− 2

∂

∂x

(
Wϕ
xxV

ϕ
x − V ϕxxWϕ

x +
1

2
WϕV

ϕ
t − 1

2
V ϕW

ϕ
t

+6ϕxW
ϕV ϕx − 6ϕxV

ϕWϕ
x +WϕV ϕxxx − V ϕWϕ

xxx

)]
dx ∧ dt = 0. (2.26)

We let V u = V
ϕ
x , V v = V ux , V w = V vx + 1

2V
ϕ
t + V ′′(u)V u and Wu = W

ϕ
x , Wv = Wu

x ,
Ww = Wv

x + 1
2W

ϕ
t +W ′′(u)Wu. V ϕ andWϕ are infinitesimal symmetries of equation (2.12),

so A = (V ϕ, V u, V v, V w) and B = (Wϕ,Wu,Wv,Ww) are solutions of the variational
equations associated with (2.20). Thus, conservation law (2.25) can be reformulated to

∂t (dϕ ∧ du)(A,B) + 2∂x(dϕ ∧ dw + dv ∧ du)(A,B) = 0

which are the conservation of symplecticity given by Bridges [13].
In the numerical study, the multisymplectic conservation law can be used to design

multisymplectic schemes, i.e., numerical schemes which can preserve the multisymplectic
conservation law.

3. Multisymplectic Preissmann scheme for the KdV equation

In this section, we consider the multisymplectic Preissmann scheme for the KdV equation.
Equation (2.20) can be reformulated as

ux = v (3.1)

vx = w − 1
2ϕt − V ′(u) (3.2)

wx = − 1
2ut (3.3)

ϕx = u. (3.4)

We apply the implicit midpoint scheme to (3.1)–(3.4) and obtain that

U 1
2

= uk +
�x
2
V 1

2
(3.5)

V 1
2

= vk +
�x
2

(
W 1

2
− 1

2
∂tΦ 1

2
− V ′(U 1

2
)

)
(3.6)

W 1
2

= wk − �x
4
∂tU 1

2
(3.7)

Φ 1
2

= ϕk +
�x
2
U 1

2
(3.8)

where U 1
2

≈ u(xk + �x
2 , t), V 1

2
≈ v(xk + �x

2 , t), W 1
2

≈ w(xk + �x
2 , t), Φ 1

2
≈ ϕ(xk + �x

2 , t)

and uk ≈ u(xk, t), vk ≈ v(xk, t), wk ≈ w(xk, t), ϕk ≈ ϕ(xk, t). The uk+1, vk+1, wk+1 ϕk+1 are
given by

uk+1 = uk + �xV 1
2

(3.9)

vk+1 = vk + �x(W 1
2
− 1

2∂tΦ 1
2
− V ′(U 1

2
)) (3.10)
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wk+1 = wk − �x
2
∂tU 1

2
(3.11)

ϕk+1 = ϕk + �xU 1
2
. (3.12)

For simplicity, we assume xk = 0 and k = 0.
We also consider the discretizations of equations (3.2) and (3.3) in time and obtain that

Ui, 1
2

= ui,0 − �t∂xWi, 1
2

(3.13)

Φi, 1
2

= ϕi,0 +
�t
2
∂tΦi, 1

2
(3.14)

ui,1 = ui,0 − 2�t∂xWi, 1
2

(3.15)

ϕi,1 = ϕi,0 + �t∂tΦi, 1
2

(3.16)

here Ui, 1
2

≈ u(i�x, �t
2 ), Φi, 1

2
≈ ϕ(i�x, �t

2 ), ui,1 ≈ u(i�x,�t), ϕi,1 ≈ ϕ(i�x,�t).
Thus, we get the implicit midpoint discretizations in time and space. In fact, the

discretization result leads to the Preissmann scheme†.
By (3.13) and (3.15), we have

U 1
2 ,

1
2

= 1
2 (u 1

2 ,1
+ u 1

2 ,0
). (3.17)

Using equations (3.5) and (3.9), we obtain that

u 1
2 ,1

= 1
2 (u0,1 + u1,1) (3.18)

u 1
2 ,0

= 1
2 (u0,0 + u1,0) (3.19)

so, (3.17)–(3.19) give

U 1
2 ,

1
2

= 1
4 (u0,1 + u1,1 + u0,0 + u1,0). (3.20)

Similarly, the relations (3.18)–(3.20) also hold for V ,W , Φ. Hence, we have

Z 1
2 ,

1
2

= 1
4 (z0,1 + z1,1 + z0,0 + z1,0) (3.21)

and

z 1
2 ,1

= 1
2 (z0,1 + z1,1) (3.22)

z 1
2 ,0

= 1
2 (z0,0 + z1,0). (3.23)

Using the discretizations in time, analogous to (3.18) and (3.19), we have

z1, 1
2

= 1
2 (z1,0 + z1,1) (3.24)

z0, 1
2

= 1
2 (z0,0 + z0,1). (3.25)

By (3.18)–(3.25) and noting that

∂tZ 1
2 ,

1
2

= 1

�t (z 1
2 ,1

− z 1
2 ,0
) (3.26)

∂xZ 1
2 ,

1
2

= 1

�x (z1, 1
2
− z0, 1

2
) (3.27)

we obtain the Preissmann scheme

1

�t M(z 1
2 ,1

− z 1
2 ,0
) +

1

�xK(z1, 1
2
− z0, 1

2
) = zS(Z 1

2 ,
1
2
). (3.28)

† The Preissmann scheme is a box scheme and was widely used in hydraulics [17].
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The Preissmann scheme is a multisymplectic scheme and has the discretized
multisymplectic conservation law

dϕ 1
2 ,1

∧ du 1
2 ,1

− dϕ 1
2 ,0

∧ du 1
2 ,0

�t + 2

(dϕ1, 1
2
∧ dw1, 1

2
− dϕ0, 1

2
∧ dw0, 1

2

�x

+
dv1, 1

2
∧ du1, 1

2
− dv0, 1

2
∧ du0, 1

2

�x
)

= 0 (3.29)

which approximates to∫
[0,�x]×[0,�t]

∂t (dz ∧M dz) + ∂x(dz ∧K dz)

=
∫ �x

0
[dϕ(x,�t) ∧ du(x,�t)− dϕ(x, 0) ∧ du(x, 0)] dx

+2
∫ �t

0
[dϕ(�x, t) ∧ dw(�x, t)− dϕ(0, t) ∧ dw(0, t)] dt

+2
∫ �t

0
[dv(�x, t) ∧ du(�x, t)− dv(0, t) ∧ du(0, t)] dt

= 0.

Using (3.15) and (3.16), we obtain the identity

dϕ 1
2 ,1

∧ du 1
2 ,1

= dϕ 1
2 ,0

∧ du 1
2 ,0

− 2�t dϕ 1
2 ,0

∧ ∂x dW 1
2 ,

1
2

+�t∂t dΦ 1
2 ,

1
2
∧ du 1

2 ,0
− 2�t2∂t dΦ 1

2 ,
1
2
∧ ∂x dW 1

2 ,
1
2
. (3.30)

By (3.13) and (3.14), we have

dϕ 1
2 ,0

= dΦ 1
2 ,

1
2
− �t

2
∂t dΦ 1

2 ,
1
2

(3.31)

du 1
2 ,0

= dU 1
2 ,

1
2

+ �t∂t dW 1
2 ,

1
2
. (3.32)

Combining (3.30)–(3.32), and noting that

∂x dW 1
2 ,

1
2

= − 1
2∂t dU 1

2 ,
1
2

we get

dϕ 1
2 ,1

∧ du 1
2 ,1

− dϕ 1
2 ,0

∧ du 1
2 ,0

�t = ∂t (dΦ 1
2 ,

1
2
∧ dU 1

2 ,
1
2
). (3.33)

Similarly,

dϕ1, 1
2
∧ dw1, 1

2
− dϕ0, 1

2
∧ dw0, 1

2

�x = dU 1
2 ,

1
2
∧ dW 1

2 ,
1
2
− 1

2
dΦ 1

2 ,
1
2
∧ ∂t dU 1

2 ,
1
2

(3.34)

dv1, 1
2
∧ du1, 1

2
− dv0, 1

2
∧ du0, 1

2

�x = dW 1
2 ,

1
2
∧ dU 1

2 ,
1
2
− 1

2
∂t dΦ 1

2 ,
1
2
∧ dU 1

2 ,
1
2
. (3.35)

Thus, (3.33)–(3.35) yield our desired result (3.29).
Though the Preissmann scheme (3.28) is multisymplectic, it involves more effort to

compute the auxiliary variables w, v, ϕ, so we eliminate w, v, ϕ by a trival computation
and obtain the following multisymplectic twelve-points scheme (figure 1):

ût + ûxxx + V̂ ′′ux = 0. (3.36)
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Figure 1. The twelve-points scheme.

If δt , δ3
x , ū

j

i are defined by

δtu
j

i = u
j+1
i − uj−1

i (3.37)

δ3
xu
j

i = u
j

i+1 − 3uji + 3uji−1 − uji−2 (3.38)

ū
j

i = 1
4 (u

j

i + uj+1
i + uji+1 + uj+1

i+1 ) (3.39)

then the discretization ût takes the form

1

16�t (δtu
j

i+1 + 3δtu
j

i + 3δtu
j

i−1 + δtu
j

i−2) (3.40)

the discretization ûxxx takes the form

1

4�x3
(2δ3

xu
j

i + δ3
xu
j+1
i + δ3

xu
j−1
i ) (3.41)

and the discretization V̂ ′′ux takes form

1

4�x (V
′(ūj−1

i )− V ′(ūj−1
i−2 ) + V ′(ūji )− V ′(ūji−2)) (3.42)

where unm ≈ u(m�x, n�t).

4. Some numerical results on solitary waves

In this section, we test the twelve-points scheme on solitary waves over long time intervals.
Concerning the detailed knowledge of solitons for the KdV equation, we refer the reader
to [14].

For convenience, we consider the KdV equation

ut + c1uxxx + c2uux = 0 (4.1)

here c1 and c2 are real constants.
We use the scheme

u1
i = u0

i − c2�t
6�x (u

0
i+1 + u0

i + u0
i−1)(u

0
i+1 − u0

i−1)−
c1�t
2�x3

(u0
i+2 − 2u0

i+1 + 2u0
i−1 − u0

i−2)

(4.2)

to give the initial value u1
i .
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Figure 2. Temporal development of waveform: �t = 0.005/π , �x = 2/400. We denote the
waveform for πt = 3.6 by the full curve, the waveform for πt = 1 by the dotted curve, and the
waveform for πt = 0 by the dot-dashed curve.,

Choosing c1 = 0.0222, c2 = 1, we consider equation (4.1) with periodic boundary
condition

u(0, t) = u(2, t) (4.3)

and the initial condition

u(x, 0) = cos(πx). (4.4)

Figure 2 shows the temporal development of the waveform. The three waveforms are in
good agreement with those given by Zabusky and Kruskal in 1965 [15, figure 1].

The numerical scheme used by Zabusky and Kruskal is

u
j+1
i = u

j−1
i − �t

3�x (u
j

i+1 + uji + uji−1)(u
j

i+1 − uji−1)

−0.0222�t
�x3

(u
j

i+2 − 2uji+1 + 2uji−1 − uji−2). (4.5)

Using scheme (4.5), we performed computations for �t = 5×10−n
π

, n = 4, 5, �x = 2
m

,
m = 200, 300, 400. From the numerical results, we found that the waveforms given by
scheme (4.5) became much worse with the time lapse. In particular, the numerical solutions
showed a blow up for πt > 21. Such a numerical example is shown in figure 3.

We also tested the twelve-points scheme. Figure 4 shows the waveforms given by the
twelve-points scheme.

Comparing figures 3 and 4, we find that with increasing time the waveform (πt = 19.9)
given by scheme (4.5) shows a great variation, but the waveform given by the twelve-points
scheme is still a smooth one.
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Figure 3. The temporal development of the waveform given by scheme (4.5): �t = (5×10−5)/π ,
�x = 2/400.
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Figure 4. The temporal development of the waveform given by scheme (3.36): �t = 0.005/π ,
�x = 2/400.
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Figure 5. The temporal development of single soliton: �x = 40/150,�t = 0.02.
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Figure 6. The temporal developments of two solitons: �x = 40/300,�t = 0.002.
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Figure 7. A three-dimensional version of the evolutions of two solitons.
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Using the twelve-points scheme, we also give some other numerical results. When c1 = 1,
c2 = 6 and the initial condition

u(x, 0) = sech2

(
x√
2

)
(4.6)

equation (4.1) (periodic boundary condition u(0, t) = u(20, t)) has one soliton (figure 5). If
we take the initial condition

u(x, 0) = 6 sech2(x) (4.7)

equation (4.1) has two solitons (figures 6 and 7).
Figure 6 shows the evolutions of two solitons. At first, the initial profile evolves into

two waves and they move apart. The taller wave travels faster, so it catches up and interacts
with the shorter one. During the interaction, the taller one passes the shorter one and the two
solitary waves all retain their waveforms. Then, they move apart and continue on their way.
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